LATIHAN SOAL
PERSAMAAN DIFERENSIAL YANG DAPAT
DIPISAH
1. (1 + 2x2)y. y’ = 2x (1 + y2)
2. x2y dx + (x +1) dy
3. y’ + (y+1) cos x = 0
4. sin x . cos y dx + tan y . cos x dy =
0
5. 

6. (x2 + 4)
= (y + 2) (x +
)
7.
= 
8. 2xy (4 – y2) dx + ( y – 1)
(x2 + 2) dy = 0
Jawab:
1. (1
+ 2x2)y. y’ = 2x (1 + y2)
Penyelesaian:
(1 + 2x2)y. y’ = 2x (1 +
y2)
(1 + 2x2)y.
= 2x (1 + y2)
(1 + 2x2)y. dy = 2x (1 +
y2) dx
(1 + 2x2)y. dy - 2x (1 +
y2) dx = 0
Mis: mis :
u = 1 + y2 u = 1 + 2x2
du = 2y dy du = 4x dx
2. x2y dx + (x +1) dy = 0
Penyelesaian :
x2y dx + (x +1) dy = 0
3. y’ + (y+1) cos x = 0
Penyelesaian:
y’ + (y+1) cos x = 0
4. sin x . cos y dx + tan y . cos x dy =
0
Penyelesaian:
sin x . cos y dx + tan y . cos x dy = 0
u
= cos x u = cos y
= ln cos x
mis: C1= ln C
5. 
Penyelesaian:

6. (x2 + 4)
= (y + 2) (x +
)
Penyelesaian:
(x2 + 4)
= (y + 2) (x +
)
Misal u=
u=
du=
du=
7. 
Penyelesaian:

Untuk:
untuk:
Misal: u =2
8. 2xy (4 – y2) dx + ( y – 1)
(x2 + 2) dy = 0
Penyelesaian:
2xy (4 – y2) dx + ( y – 1) (x2 + 2) dy = 0
mis:
4A
= -1...............................................................(1)
A = - 
2B
+ 2C = 1 ........................................................(2)
-(A + B – C) = 0
...................................................(3)
Subsitusikan A = -
ke persamaan (3)
- B + C = A
- B + C = -
.................(4)
Dari persamaan (2) dan (4)
-
4B =
B =
Subsitusikan B =
ke persamaan (2)
2B + 2C = 1
2
+ 2C = 1
2C = 1 -
2B + 2C = 1
2
2C = 1 -
C = 
Dengan mensubsitusikan nilai A, B dan C. Maka :


Jadi,