LATIHAN SOAL
PERSAMAAN DIFERENSIAL YANG DAPAT
DIPISAH
1. (1 + 2x2)y. y’ = 2x (1 + y2)
2. x2y dx + (x +1) dy
3. y’ + (y+1) cos x = 0
4. sin x . cos y dx + tan y . cos x dy =
0
5. 

6. (x2 + 4)
= (y + 2) (x +
)


7.
= 


8. 2xy (4 – y2) dx + ( y – 1)
(x2 + 2) dy = 0
Jawab:
1. (1
+ 2x2)y. y’ = 2x (1 + y2)
Penyelesaian:
(1 + 2x2)y. y’ = 2x (1 +
y2)
(1 + 2x2)y.
= 2x (1 + y2)

(1 + 2x2)y. dy = 2x (1 +
y2) dx
(1 + 2x2)y. dy - 2x (1 +
y2) dx = 0


Mis: mis :
u = 1 + y2 u = 1 + 2x2


du = 2y dy du = 4x dx














2. x2y dx + (x +1) dy = 0
Penyelesaian :
x2y dx + (x +1) dy = 0













3. y’ + (y+1) cos x = 0
Penyelesaian:
y’ + (y+1) cos x = 0









4. sin x . cos y dx + tan y . cos x dy =
0
Penyelesaian:
sin x . cos y dx + tan y . cos x dy = 0



u
= cos x u = cos y












= ln cos x




mis: C1= ln C




5. 

Penyelesaian:






















6. (x2 + 4)
= (y + 2) (x +
)


Penyelesaian:
(x2 + 4)
= (y + 2) (x +
)






Misal u=
u=


du=
du=










7. 

Penyelesaian:




Untuk:

untuk:
Misal: u =2









8. 2xy (4 – y2) dx + ( y – 1)
(x2 + 2) dy = 0
Penyelesaian:
2xy (4 – y2) dx + ( y – 1) (x2 + 2) dy = 0








mis:






4A
= -1...............................................................(1)
A = - 

2B
+ 2C = 1 ........................................................(2)
-(A + B – C) = 0
...................................................(3)
Subsitusikan A = -
ke persamaan (3)


- B + C = A
- B + C = -
.................(4)

Dari persamaan (2) dan (4)





-
4B =

B =

Subsitusikan B =
ke persamaan (2)
2B + 2C = 1
2
+ 2C = 1
2C = 1 -

2B + 2C = 1
2

2C = 1 -

C = 

Dengan mensubsitusikan nilai A, B dan C. Maka :




Jadi,







